Вариант 2443667975.
Строгий анализ некоторого алгоритма, обнаружил, что как только размер входа превосходит некоторую константу M, время выполнения алгоритма, T(n), становится не больше, чем куб от длины входа умноженный на константу, что для всех входов длины n
Рассмотрим утверждения:
Рассмотрим алгоритмы-политики планировщика процессов:
Какие предотвращают «ресурсное голодание»?
Какое из бинарных деревьев обеспечит быстрейший поиск элемента «2»?
Рассмотрим контекстно-свободную грамматику G1:
<Exp> → <Exp> + <Exp> | <Exp> - <Exp> <Exp> → <Exp> * <Exp> | <Exp> / <Exp> <Exp> → <Id> <Id> → a | b | c | … | y | z
Затем, рассмотрим ее модификацию G2:
<Exp> → <Term> | <Exp> + <Term> | <Exp> - <Term> <Term> → <Factor> | <Term> * <Factor> | <Term> / <Factor> <Factor> → <Id> <Id> → a | b | c | … | y | z
Теперь рассмотрим утверждения:
Проведем BFS-поиск (поиск в ширину), кратчайшего пути из A в Z:
[svg]
В каком порядке алгоритм посетит вершины?
Теоретически возможно реализовать любую комбинаторную логику используя только «NAND» или «NOR» узлы. Какие плюсы наличия более широкого класса логических вентилей при проектировании? Рассмотрим гипотезы:
Рассмотрим граф перехода конечного автомата (конечного преобразователя), пусть самое правое состояние у него будет принимающим.
Что неверно?
На этой картинке
Рассмотрим дерево: [svg]
Что нельзя о нем сказать?
Рассмотрим программу на C++:
#include <stdio.h> int void main() { int j=0, k=0; f(j); cout << j + k; } void f (int& i) { k = i + 3; i = k * i; }
Напомним, что в C/C++, «int& i» — означает передачу целого параметра по ссылке.
Какое значение выведет программа?