Вариант 136162230.
Рассмотрим фрагмент программы на C:
int fibo (int n) { if (n<2) return n; else return fibo(n-1)+fibo(n-2); }
Что fibo вернет для n=7?
Проведем BFS-поиск (поиск в ширину), кратчайшего пути из A в Z:
[svg]
В каком порядке алгоритм посетит вершины?
Чтобы найти время выполнения T(n) для «fibo», предположим, что для некоторых констант a и b
Следующим шагом, определим рекуррентное соотношение, которое, если решить, будет определять время работы T(n) через константы a и b. Выберите правильное.
Какое из бинарных деревьев обеспечит быстрейший поиск элемента «2»?
Рассмотрим граф перехода конечного автомата (конечного преобразователя), пусть самое правое состояние у него будет принимающим.
Что неверно?
Строгий анализ некоторого алгоритма, обнаружил, что как только размер входа превосходит некоторую константу M, время выполнения алгоритма, T(n), становится не больше, чем куб от длины входа умноженный на константу, что для всех входов длины n
Рассмотрим утверждения:
Рассмотрим контекстно-свободную грамматику G1:
<Exp> → <Exp> + <Exp> | <Exp> - <Exp> <Exp> → <Exp> * <Exp> | <Exp> / <Exp> <Exp> → <Id> <Id> → a | b | c | … | y | z
Затем, рассмотрим ее модификацию G2:
<Exp> → <Term> | <Exp> + <Term> | <Exp> - <Term> <Term> → <Factor> | <Term> * <Factor> | <Term> / <Factor> <Factor> → <Id> <Id> → a | b | c | … | y | z
Теперь рассмотрим утверждения:
Отсортированный список из 500 чисел хранится в индексированном массиве. Чтобы найти определенный элемент-число, какое максимальное число поисковых операций нужно при…
На этой картинке
Рассмотрим алгоритмы-политики планировщика процессов:
Какие предотвращают «ресурсное голодание»?