Зарезервированные практические задачи
Всего страниц найдено: 13.
----
Задача «Optprob/Художник продает картины галереям»
Престижный художник создал 4 произведения искусства. Галереи A, B и C заинтересованы в их приобретении и готовы заплатить за каждую работу суммы (в миллионах денежных единиц), указанные в таблице:
. Картина1 Картина2 Картина3 Картина4
А 12 10 8 10
B 14 11 6 7
C 15 13 8 9
Художник собирается продать все произведения искусства, и каждая галерея должна приобрести хотя бы одно произведение (им, в общем, все равно, что продадут). Хотя известно, что галерея A купит только одну картину.
Как художник будет распределять произведения искусства между галереями, чтобы максимизировать свой доход?
Вариант: художник добавил следующее ограничение: работы 2 и 4 должны висеть рядом, и быть проданы в одну и ту же галерею.
Задача зарезервирована: VoyakinaES 12:30, 11 ноября 2024 (UTC)
Задача «MAX-SAT: дерандомизация/Задачи/eupce-6-15»
Задача зарезервирована: EjenY 15:43, 10 ноября 2024 (UTC)
Задача «MAX-CUT: вероятностное округление/Задачи/eupce-6-14»
Задача зарезервирована: Solovev 15:41, 10 ноября 2024 (UTC)
Задача «MAX-SAT: дерандомизация/Задачи/eupce-6-2-a»
Задача зарезервирована: Solovev 15:12, 10 ноября 2024 (UTC)
Докажите, что для каждого целого числа n существует раскраска ребер полного графа
Задача «Вероятность/Задачи/eupce-2-7-c»
Задача зарезервирована: Solovev 15:16, 10 ноября 2024 (UTC)
X и Y — независимые случайные величины с геометрическим распределением, с параметрами P и Q соответственно.
P(min(X, Y) = k) = ?
Задача «Вероятность/Задачи/eupce-2-7-a»
Задача зарезервирована: EjenY 15:19, 10 ноября 2024 (UTC)
X и Y — независимые случайные величины с геометрическим распределением, с параметрами P и Q соответственно.
P(X = Y) = ?
Задача «Вероятность/Задачи/eupce-2-4»
Докажите, что
Задача зарезервирована: Ermakov
Задача «Вероятность/Задачи/eupce-1-15»
Предположим, что бросают десять стандартных шестисторонних костей.
Какова вероятность того, что их сумма будет деленной на 6, предполагая, что броски независимы?
Задача зарезервирована: Ermakov
Задача «Вероятность/Задачи/eupce-1-13»
Медицинская компания рекламирует свой новый тест на определенное заболевание.
Частота ошибок первого рода (false negative) мала: если у вас есть расстройство, вероятность того, что тест вернет положительный результат, составляет 0.999.
Частота ошибок второго рода (false positive) тоже невелика: если у вас нет расстройства, вероятность того, что тест вернет положительный результат, составляет всего 0.005.
Предположим, что эту болезнь имеет 2% населения.
Если мы проверяем человека, выбранного равномерно из популяции, и получается положительный результат, какова вероятность того, что эта болезнь у него действительно есть?
Задача зарезервирована: Ermakov
Задача «Open Exercises»
Задача «Optprob/Назначение инженеров на проекты»
Мы планируем распределять инженеров по проектам компании.
В течение следующего года компания имеет возможность участвовать в десяти инженерных проектах.
Каждый проект требует персонала (для проекта j потребуется Aj инженеров любого типа), приносит доход (G_j) и имеет общие расходы (C_j).
Projects | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
A | 3 | 3 | 3 | 2 | 2 | 2 | 4 | 4 | 4 | 5 |
C | 10000 | 20000 | 25000 | 40000 | 10000 | 40000 | 20000 | 25000 | 10000 | 30000 |
G | 55000 | 60000 | 60000 | 90000 | 30000 | 100000 | 65000 | 50000 | 50000 | 60000 |
Инженеры компании делятся на две категории:
- S: Старший инженер (с опытом)
- JJ: Младший инженер (без достаточного опыта)
Каждый инженер имеет годовую зарплату M.
В настоящее время компания располагает штатом, состоящим из семи старших инженеров и четырех младших инженеров.
Engineers | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
S | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
JJ | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
M | 50000 | 45000 | 30000 | 35000 | 28000 | 58000 | 36000 | 55000 | 35000 | 50000 | 33000 |
Каждый инженер, будь то старший или младший, подходит для каждого из проектов, в зависимости от их подготовки. Эта пригодность измеряется в виде непрерывного индекса от 0 (нет) до 1 (оптимально).
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
1 | 0 | 1 | 0.5 | 0.5 | 0.5 | 1 | 0.3 | 0.2 | 0.4 | 0.8 |
2 | 0.5 | 0.5 | 1 | 0.3 | 0.2 | 0.4 | 1 | 1 | 0 | 0 |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 0.4 | 0.5 | 0.6 | 0.5 |
4 | 2 | 0.5 | 0.5 | 1 | 0.3 | 0.2 | 0.4 | 2 | 0.3 | 0.5 |
5 | 0.5 | 1 | 0.3 | 0.2 | 0.4 | 1 | 1 | 1 | 0.3 | 0 |
6 | 0.2 | 0.5 | 0.5 | 3 | 0 | 0 | 1 | 1 | 1 | 0.6 |
7 | 1 | 0.6 | 0.7 | 0.5 | 0.5 | 1 | 0.3 | 0.2 | 0.4 | 0.6 |
8 | 1 | 3 | 3 | 3 | 0.5 | 1 | 0.3 | 0.2 | 0.4 | 1 |
9 | 0 | 1 | 1 | 0.5 | 0.5 | 1 | 0.3 | 0.2 | 0.4 | 0.1 |
10 | 0.5 | 1 | 0.3 | 0.2 | 0.5 | 1 | 0.3 | 0.2 | 0.4 | 1 |
11 | 0.5 | 1 | 0.3 | 0.2 | 0.5 | 1 | 0.3 | 0.2 | 0.4 | 1 |
Компания имеет возможность нанимать новых инженеров.
Затраты, которые компания оценивает для найма новых сотрудников, следующие
следующим образом:
- Старший инженер: $50 000/год
- Младшие инженеры: $35 000/год
Для новых инженеров компания присваивает пригодность 75% старшим инженерам и 50% младшим, так как персонал будет подбираться в соответствии к проектам.
Существует два типа назначений для инженеров:
- частичная занятость
- полный рабочий день
Компания позволяет назначить инженера на неполный или полный рабочий день на проекты. Если он работает полный рабочий день, он может быть занят только в одном проекте.
Если неполный рабочий день — может быть максимум в двух.
Новые инженеры могут быть назначены только эксклюзивно.
На проекте затраты на зарплату инженера, назначенного на неполный рабочий день, будут составлять половину ее оклада.
Количество инженеров, необходимых проекту, всегда является величиной, предполагающей исключительности.
Если инженеры назначены на неполный рабочий день, то два инженера на неполный рабочий день считаются как
один инженер.
Компания хочет, чтобы
- в каждом проекте, в котором она участвует, был как минимум один старший инженер (новый или уже работающий) на полную ставку.
- общая пригодность инженеров, назначенных на проект, была выше 50% — расчет общей пригодности производится как сумма пригодности инженеров, назначенных на проект, деленная на количество назначенных инженеров, независимо от того, работают ли они неполный или полный рабочий день.
Помимо всего этого, существуют и другие спецификации:
- В проекте не должно быть более трех инженеров, работающих неполный рабочий день.
- Проекты 5 и 6 не могут иметь ни одного общего инженера в этих двух проектах.
- Участие в проекте 2 на неполный рабочий день требует участия в проекте 3.
Цель компании — максимизация прибыли: «Доход от проектов» - «Расходы» (расходы на заработную плату + общие расходы).
Задача зарезервирована: Evvnes 07:21, 14 ноября 2024 (UTC)
Задача «Optprob/Планируем генерацию электричества»
Долгосрочный план выработки электроэнергии учитывает график работы существующих энергоблоков и график установки новых электростанций для удовлетворения спроса на электроэнергию в течение ряда будущих (5) лет при минимально возможных затратах.
- Период планирования; 5 лет
Потребность в электроэнергии описывается кривой продолжительности нагрузки (LDC), как показано на рис (цифры на картинке приблизительны, точные будут дальше текстом), по оси ординат — мегаватты, по оси абсцисс — часы.
Площадь под графиком соответствует потребностям производства электроэнергии в мегаватт-часах.
Чтобы модель была простой, например линейной, график аппроксимируется кусочно-постоянной функцией, показанной в виде гистограммы (ступенчатой функции), с
- «Bars=4».
- TD — отсечки по горизонтали
2920 3650 1280 910
Первый столбец обозначает минимальную нагрузку, столбец «4» — пиковую нагрузку, а два промежуточных — представляют потребность в средней нагрузке.
В любой компании или стране для производства электроэнергии используется несколько различных типов (n=5) технологий, таких как
- паровые турбины
- газовые турбины
- гидроэлектростанции
- дизель-генераторы
- комбинированные генераторы
Эти энергоблоки требуют различных затрат, затрат на установку и переменных затрат, и переменная по времени генерации (что-то ломается, что-то амортизируется, что-то улучшается).
- ; — планируемые мощности существующих генерирующих типов по времени.
15000 18000 20000 21000 21000 40000 350000 300000 280000 280000 50000 400000 400000 400000 300000 10000 100000 120000 130000 150000 1000 11000 12000 14000 16000
- ; Переменная (на мегаватт) годовая стоимость старой установки типа «i»
4 4 4 4 4 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1
Кроме того, в будущем могут быть добавлены дополнительные мощности.
Например, предположим, что модель решила установить новую установку типа «j=1» мощностью 50 МВт в период «1», она будет существовать в системе до истечения технического срока службы этой установки (Это потому, что продолжительность горизонта планирования, рассматриваемого в этой задаче, короче, чем технический срок службы любого нового энергоблока, доступного на рынке).
- ; Фиксированная годовая стоимость новой установки типа «j»
100 110 110 120 120 200 200 200 200 200 300 290 290 285 285 200 190 190 180 180 50 50 50 50 50 ~
- ; Фиксированная годовая стоимость новой установки типа «j»
!AF; 80 80 85 85 85
85 85 85 85 85 90 90 90 90 90 90 90 95 95 95 85 85 90 90 90~
!PD; 6000 6000 6000 6000 6000
9000 10000 110000 12000 13000 25000 27000 27000 27000 27000 50000 58000 58000 58000 57000~
!W; 20 50 10 10 10~
Кроме того, они имеют разный технический срок службы и придерживаются разных правил технического обслуживания.
Задача планирования состоит в том, чтобы определить
- график работы существующих установок,
- установок нового поколения, которые будут запущены в будущем,
- и график введения новых установок путем минимизации суммы затрат на установку и эксплуатацию за заданное количество
лет, соблюдая при этом технические и финансовые ограничения.
Как только будет добавлен новый энергоблок с заданной мощностью, этот энергоблок будет эксплуатироваться на протяжении всего горизонта планирования.
С другой стороны, администрация имеет предпочтение между различными типами технологий, то есть между различными генерирующими установками в случае новых установок.
Это предпочтение описывается процентным коэффициентом от минимума, который должен иметь каждый новый блок, по сравнению с общей энергией, установленной в новых блоках.
Пока не додумано, надо доработать
Задача зарезервирована: StasFomin 16:33, 27 ноября 2022 (UTC)
Задача «Полиномиальные сводимости и NP-полные задачи. Классы NP, coNP, NPC/Задачи/MAX-CUT-NPC»
Докажите, что задача MAX-CUT, в форме задачи разрешения («правда, ли, что для графа G есть разрез больше K?») NP-полна.
Задача зарезервирована: Ermakov
[ Хронологический вид ]Комментарии
Войдите, чтобы комментировать.