Вариант 2473133200.
Какой метод применялся в теме про подсчет выполняющих наборов для ДНФ?
Выберите верное утверждение
Формулировка (в виде ЦЛП) какой задачи приведена ниже:
Сложность алгоритма динамического программирования для задачи о рюкзаке, который «помнит» о наиболее «дорогих» допустимых решениях:
Для чего применяется «метод условных вероятностей»:
Найдите неверное утверждение:
Рассмотрим пару задач на графах.
Для заданного графа, подтвердить или опровергнуть, что в нем есть цикл, который проходит по каждому ребру точно один раз, без исключений.
Какова сложность вероятностного алгоритма Фрейвалда для проверки тождества AB=C для матриц ?
Пусть S — задача из NPC, а Q и R — тоже задачи, но про них известно только, что Q — полиномиально сводиться по Карпу к S, а S — к R.
Что будет верно?
Рассмотрим модификацию задачи «Сумма размеров», разрешим даже отрицательные размеры.
Формально: Даны натуральные числа , , и число B.
Надо узнать, существует ли решение в 0/1 переменных уравнения .
Существует ли полиномиальный алгоритм для этой задачи?
Какой класс ошибок допускают алгоритмы решающие задачи из класса PP?
Рассмотрим две задачи разрешения, P1 и P2, такие что
Что можно утверждать?
Существует ли алгоритм, который выписывает одну за другой все машины Тьюринга, которые останавливаются, будучи запущенными на пустой ленте?
Какой алгоритм используется только в лучшем из рассмотренных в теме FPTAS-алгоритмов для рюкзака?
С какой точностью работает «чисто» жадный алгоритм для задачи о рюкзаке («хватать предметы по убыванию удельной стоимости, пока не кончится место в рюкзаке»)?
Гамильтонов цикл в графе:
Множество S является разрешимым, тогда и только тогда, когда существует такая машина Тьюринга T, что:
Какой алгоритм используется в алгоритме Кристофидеса?
Предположим, открыли полиномиальный алгоритм, вычисляющий наибольшую клику в заданном графе. Что тогда будет, согласно вариантам на картинке?
Вероятностный алгоритм A, который, получая
за время, полиномиальное от , выдает в качестве выхода , такое, что
называется:
Какие из подходов к решению вычислительно трудных задач изучались в курсе?
Выберите корректное утверждение:
Какой из этих тестов на простоту не является рандомизированным:
Будет ли класс -полных задач замкнутым относительно сводимости по Карпу, если окажется, что ?
Пусть задача A — «есть ли цикл в ненаправленном графе». Рассмотрим набор утверждений.
Что верно?
Является ли пустое множество разрешимым?
Выберите не NP-полную задачу
Что верно для NP-полных и NP-трудных задач:
Выберите верное верное утверждение из списка ниже, если верных вариантов ответа несколько, то выберите наиболее сильный из них:
В работах по теории сложности алгоритм называется полиномиальным в среднем, если для входов длины n и времени работы алгоритма T, выполняется:
Пусть X — задача из NP. Что верно?
Какой прием используется в FPTAS-алгоритме для рюкзака?
Какова точность, гарантируемая жадным алгоритмом в задаче о k-покрытии?
Возможно ли сконструировать алгоритм , который для произвольной машины Тюринга и входа определит, остановится ли данная М.Т. на заданном входе?
Вероятностные «zero-error»-алгоритмы:
Цикл, проходящий через все ребра графа по одному разу, называется
Замкнутость по какой из операций выполнена как для разрешимых, так и для перечислимых языков?
Паросочетание, покрывающее все вершины графа, называется
Какова наилучшая сложность алгоритма из темы про FPTAS-алгоритмы для рюкзака?
У языков L1-L4 доказаны следующие полиномиальные сводимости по Карпу: «L1→L2», «L3→L2→L4» Рассмотрим утверждения:
Выберите верное следствие:
Какова точность, гарантируемая гибридным вероятностным алгоритмом из темы про вероятностное округление MAX-SAT?
Выберите общепринятое определение класса NPC (NP-полных задач).
тогда и только тогда, когда:
Пусть сводится по Карпу к . Выберите верное утверждение:
Паросочетание, это подмножество...
Является ли конкатенация двух разрешимых языков перечислимой?
Пересечение двух каких классов окажется пустым, если окажется, что ?
Задача 2SAT:
Какова точность, гарантируемая жадным алгоритмом в задаче о покрытии?
Предположим, разумеется, что Тогда что будет верно?
Какое утверждение неверно?
Аню и Колю попросили показать, что задача X — NP-полна. Аня показала полиномиальную сводимость по Карпу от 3SAT к X, а Коля показал полиномиальную сводимость по Карпу от X к 3SAT.
Метод многократного запуска вероятностного алгоритма, с целью уменьшения вероятности ошибки называется:
Существует ли алгоритм, который выписывает одну за другой все машины Тьюринга, которые не останавливаются, будучи запущенными на пустой ленте?
Какой класс ошибок допускают алгоритмы решающие задачи из класса ZPP?
Пусть
Какой класс ошибок допускают алгоритмы решающие задачи из класса BPP?