Вариант 42741161.
Пусть имеется два отсортированных списка размера K и L соответственно. Сколько потребуется сравнений элементов, для того чтобы получить отсортированный список размера K + L, состоящий из элементов этих списков?
Предположим, что G — это связный неориентированный граф, ребра которого имеют положительные веса. Пусть M — минимальное остовное дерево этого графа. Мы модифицируем граф, добавляя «6» к весу каждого ребра, какое из следующих утверждений верно?
Существует несколько способов определить порядок умножения матриц A, B, C, D: (A(BC)D), A(B(CD)), (AB)(CD), ((AB)C)D), A((BC)D)
Эффективность умножения зависит от числа скалярных произведений, для (A(BC))D получится:
Для (A(B(CD))):
Какие размерности у матриц A, B, C, D соответственно?
Предположим, что символы a,b,c,d,e встречаются с частотами . Какие получатся коды Хаффмана для букв a,b,c соответственно?
Какое из следующих рекуррентных соотношений не может быть использовано для алгоритма быстрой сортировки?
Рассмотрим следующее AVL-дерево: [svg]
Если в данное дерево требуется вставить элемент со значением 12, сколько поворотов необходимо сделать для балансировки дерева?
Рассмотрим следующий код:
y = y + z for i in range(1, n + 1): k = k + 2; for i in range(1, n + 1): for j in range(1, n + 1): x = x + 1;
Какая сложность по времени для данного кода является правильной?
Пусть дана последовательность n случайных чисел. Какая будет временная сложность для вычисления медианы данного массива?
Рассмотрим следующие утверждения (h(k) — хэш-функция):
Каково число подстрок любой длины, за исключением пустой строки, может быть получено из заданной строки длиной n?