Тест по Computer Science — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
Тест по Computer Science, подготовил Участник:Ssyrovatkin

Вариант 4181054992.


Ваше имя*:


Вопрос 1

Каково число подстрок любой длины, за исключением пустой строки, может быть получено из заданной строки длиной n?

  1.  
  2.  
  3.  
  4.  

Вопрос 2

Какой будет временная сложность печати всех ключей дерева бинарного поиска в отсортированном порядке?

  1.  
  2.  
  3.  
  4.  

Вопрос 3

Существует несколько способов определить порядок умножения матриц A, B, C, D: (A(BC)D), A(B(CD)), (AB)(CD), ((AB)C)D), A((BC)D)

Эффективность умножения зависит от числа скалярных произведений, для (A(BC))D получится:

Для (A(B(CD))):

Какие размерности у матриц A, B, C, D соответственно?

  1.  , , ,
  2.  , , ,
  3.  , , ,
  4.  , , ,

Вопрос 4

Рассмотрим следующее рекуррентное соотношение: Какое из следующих утверждений является верным?

  1.  Данное соотношение подходит для случая 3 Master теоремы
  2.  Данное соотношение подходит для случая 1 Master теоремы
  3.  Данное соотношение подходит для случая 2 Master теоремы
  4.  Master теорема не может быть применена, поскольку не является константой

Вопрос 5

Какая временная сложность выполнения данного кода?

for (i = n; i > 0; i/= 2){
    for (int j = 1; j < n; j * = 2){
        for (int k = 0; k < n; k + = 2){
        sum + = (i + j * k);
        }
    }
}
  1.  
  2.  
  3.  
  4.  

Вопрос 6

Какие из следующих алгоритмов используют подход Разделяй и Властвуй?

  1.  Быстрая сортировка
  2.  Бинарный поиск и умножение Штрассена
  3.  Все выше перечисленные
  4.  Сортировка слиянием

Вопрос 7

Рассмотрим следующие утверждения (h(k) — хэш-функция):

  • I. если даже .
  • II. для любых .
  • III. для любых .
  1.  Только II, III
  2.  Только I, II
  3.  I, II, III
  4.  Только I

Вопрос 8

Предположим, что G — это связный неориентированный граф, ребра которого имеют положительные веса. Пусть M — минимальное остовное дерево этого графа. Мы модифицируем граф, добавляя «6» к весу каждого ребра, какое из следующих утверждений верно?

  1.  Модификация добавляет к общему весу всех остовных деревьев.
  2.  Ничего из вышеперечисленного.
  3.  Порядок ребер, добавляемых к минимальному остовному дереву с использованием алгоритма Прима, изменится.
  4.  Порядок ребер, добавляемых к минимальному остовному дереву с использованием алгоритма Крускала, изменится.

Вопрос 9

Предположим, что символы a,b,c,d,e встречаются с частотами . Какие получатся коды Хаффмана для букв a,b,c соответственно?

  1.  1100, 1101, 111
  2.  1101, 111, 1101
  3.  1101, 1100, 111
  4.  1100, 10, 0

Вопрос 10

Рассмотрим следующие выражения:

  • I. Диграф — это граф, имеющий ровно 2 вершины.
  • II. Остовное дерево в графе всегда должно содержать как минимум ребер.
  • III. Алгоритм сортировки ребер для решения задачи коммивояжера всегда дает оптимальный результат.

Какие утверждения верные, а какие нет?

  1.  II, III
  2.  Только II
  3.  I, III
  4.  I, II