Тест по Computer Science — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
Тест по Computer Science, подготовил Участник:Ssyrovatkin

Вариант 3328622120.


Ваше имя*:


Вопрос 1

Какое из представленных ниже регулярных выражений задает строки вида , где m, p, n больше либо равно 2.

  1.  
  2.  
  3.  
  4.  

Вопрос 2

Какова временная сложность выполнения алгоритма Беллмана-Форда на K-регулярном графе ()?

  1.  
  2.  
  3.  
  4.  

Вопрос 3

Сколько существует различных бинарных деревьев с 8 узлами?

  1.  64
  2.  256
  3.  128
  4.  248

Вопрос 4

Рассмотрим следующие утверждения об алгоритме обхода графа в глубину:

  • I. Предположим, мы запускаем DFS на неориентированном графе и находим ровно 15 обратных ребер. Тогда граф гарантированно будет иметь по крайней мере один цикл.
  • II. DFS на ориентированном графе с n вершинами и, по крайней мере, n ребрами гарантированно найдет хотя бы одно обратное ребро.

Какие из данных утверждений верны?

  1.  Только II
  2.  Только I
  3.  Ни одно
  4.  Оба

Вопрос 5

Какая временная сложность выполнения данного кода?

for (i = n; i > 0; i/= 2){
    for (int j = 1; j < n; j * = 2){
        for (int k = 0; k < n; k + = 2){
        sum + = (i + j * k);
        }
    }
}
  1.  
  2.  
  3.  
  4.  

Вопрос 6

Рассмотрим следующие выражения:

  • I.
  • II.

Какие утверждения верные, а какие нет?

  1.  I-False, II-False
  2.  I-TRUE, II-TRUE
  3.  I-False, II-TRUE
  4.  I-TRUE, II-False

Вопрос 7

Рассмотрим следующий код:

y = y + z
for i in range(1, n + 1):
    k = k + 2;
for i in range(1, n + 1):
    for j in range(1, n + 1):
        x = x + 1;

Какая сложность по времени для данного кода является правильной?

  1.  
  2.  
  3.  
  4.  

Вопрос 8

Пусть G = (V, E) неориентированный граф, какие утверждения ниже являются верными?

  • I. Если G является деревом, то между двумя любыми вершинами G существует единственный уникальный путь.
  • II. Если G = (V, E) является связным, и E = V - 1, тогда G является деревом.
  • III. Удаление ребра из цикла не может сделать граф несвязным.
  1.  Только III
  2.  Только I, II
  3.  Только II
  4.  I, II, III

Вопрос 9

Предположим, что G — это связный неориентированный граф, ребра которого имеют положительные веса. Пусть M — минимальное остовное дерево этого графа. Мы модифицируем граф, добавляя «6» к весу каждого ребра, какое из следующих утверждений верно?

  1.  Порядок ребер, добавляемых к минимальному остовному дереву с использованием алгоритма Прима, изменится.
  2.  Ничего из вышеперечисленного.
  3.  Порядок ребер, добавляемых к минимальному остовному дереву с использованием алгоритма Крускала, изменится.
  4.  Модификация добавляет к общему весу всех остовных деревьев.

Вопрос 10

Для какой из изображенных ниже куч на минимум будут получены элементы массива в порядке возрастания, если для кучи применяется обход preorder traversal?

  1.  [svg]
  2.  [svg]
  3.  [svg]
  4.  [svg]