Вариант 313707726.
Запустим алгоритм Дейкстры, начиная с вершины S, чтобы найти кратчайший путь T, и рассмотрим следующие утверждения:
Какие из данных утверждений верны?
Алгоритм Беллмана-Форда решает задачу кратчайшего пути из вершины в случае, когда веса ребер могут быть отрицательными, какова временная сложность выполнения алгоритма Беллмана-Форда?
Рассмотрим следующие утверждения:
Для какого алгоритма сортировки все утверждения являются верными?
Пусть структура данных поддерживает операцию `foo`, таким образом, что последовательность из n операций `foo` занимает времени в худшем случае. Каково амортизационное время операции `foo`?
Рассмотрим следующее AVL-дерево: [svg]
Если в данное дерево требуется вставить элемент со значением 12, сколько поворотов необходимо сделать для балансировки дерева?
Чтобы выполнить поиск элемента в dynamic set, какой из следующих методов является асимптотически наиболее эффективным по времени в наихудшем случае для операции поиска?
Сколько остовных деревьев имеет данный граф (все ребра имеют одинаковый вес)?
[svg]
Какие из представленных ниже утверждений являются верными?
Что из перечисленного не может быть временной сложностью алгоритма быстрой сортировки ни в одном из средних, наилучших или наихудших случаев?
Пусть дана последовательность n случайных чисел. Какая будет временная сложность для нахождения элемента, который встречается больше, чем n/2 раз (если такой элемент существует)?