Тест по Computer Science — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
Тест по Computer Science, подготовил Участник:Ssyrovatkin

Вариант 2098861946.


Ваше имя*:


Вопрос 1

Пусть структура данных поддерживает операцию `foo`, таким образом, что последовательность из n операций `foo` занимает времени в худшем случае. Каково амортизационное время операции `foo`?

  1.  
  2.  
  3.  
  4.  

Вопрос 2

Какая временная сложность выполнения данного кода?

for (i = n; i > 0; i/= 2){
    for (int j = 1; j < n; j * = 2){
        for (int k = 0; k < n; k + = 2){
        sum + = (i + j * k);
        }
    }
}
  1.  
  2.  
  3.  
  4.  

Вопрос 3

Что из перечисленного не может быть временной сложностью алгоритма быстрой сортировки ни в одном из средних, наилучших или наихудших случаев?

  1.  
  2.  
  3.  
  4.  

Вопрос 4

Пусть дана последовательность n случайных чисел. Какая будет временная сложность для вычисления медианы данного массива?

  1.  
  2.  
  3.  
  4.  

Вопрос 5

Сколько существует различных бинарных деревьев с 8 узлами?

  1.  128
  2.  248
  3.  64
  4.  256

Вопрос 6

Какова временная сложность выполнения алгоритма Беллмана-Форда на K-регулярном графе ()?

  1.  
  2.  
  3.  
  4.  

Вопрос 7

Какое из представленных ниже регулярных выражений задает строки вида , где m, p, n больше либо равно 2.

  1.  
  2.  
  3.  
  4.  

Вопрос 8

Предположим, что G — это связный неориентированный граф, ребра которого имеют положительные веса. Пусть M — минимальное остовное дерево этого графа. Мы модифицируем граф, добавляя «6» к весу каждого ребра, какое из следующих утверждений верно?

  1.  Ничего из вышеперечисленного.
  2.  Модификация добавляет к общему весу всех остовных деревьев.
  3.  Порядок ребер, добавляемых к минимальному остовному дереву с использованием алгоритма Прима, изменится.
  4.  Порядок ребер, добавляемых к минимальному остовному дереву с использованием алгоритма Крускала, изменится.

Вопрос 9

Рассмотрим следующие выражения:

  • I. Подсчет медианы из n элементов занимает времени для любого алгоритма, основанного на сравнении элементов.
  • II. Пусть T является минимальным остовным деревом для графа G. Тогда для любой пары вершин a и b кратчайший путь между ними в G является кратчайшим путем между ними в T.

Какие утверждения верные, а какие нет?

  1.  I-TRUE, II-TRUE
  2.  I-False, II-TRUE
  3.  I-False, II-False
  4.  I-TRUE, II-False

Вопрос 10

Пусть имеется два отсортированных списка размера K и L соответственно. Сколько потребуется сравнений элементов, для того чтобы получить отсортированный список размера K + L, состоящий из элементов этих списков?

  1.  
  2.  
  3.  
  4.