Тест по Computer Science — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
Тест по Computer Science, подготовил Участник:Ssyrovatkin

Вариант 635927212.


Ваше имя*:


Вопрос 1

Рассмотрим следующий код:

y = y + z
for i in range(1, n + 1):
    k = k + 2;
for i in range(1, n + 1):
    for j in range(1, n + 1):
        x = x + 1;

Какая сложность по времени для данного кода является правильной?

  1.  
  2.  
  3.  
  4.  

Вопрос 2

Запустим алгоритм Дейкстры, начиная с вершины S, чтобы найти кратчайший путь T, и рассмотрим следующие утверждения:

  • I. Алгоритм Дейкстры возвращает кратчайший путь с минимальным общим весом.
  • II. Алгоритм Дейкстры возвращает кратчайший путь с минимальным количеством ребер.

Какие из данных утверждений верны?

  1.  Только I
  2.  Оба
  3.  Только II
  4.  Ни одно

Вопрос 3

Предположим, что G — это связный неориентированный граф, ребра которого имеют положительные веса. Пусть M — минимальное остовное дерево этого графа. Мы модифицируем граф, добавляя «6» к весу каждого ребра, какое из следующих утверждений верно?

  1.  Порядок ребер, добавляемых к минимальному остовному дереву с использованием алгоритма Прима, изменится.
  2.  Порядок ребер, добавляемых к минимальному остовному дереву с использованием алгоритма Крускала, изменится.
  3.  Модификация добавляет к общему весу всех остовных деревьев.
  4.  Ничего из вышеперечисленного.

Вопрос 4

Существует несколько способов определить порядок умножения матриц A, B, C, D: (A(BC)D), A(B(CD)), (AB)(CD), ((AB)C)D), A((BC)D)

Эффективность умножения зависит от числа скалярных произведений, для (A(BC))D получится:

Для (A(B(CD))):

Какие размерности у матриц A, B, C, D соответственно?

  1.  , , ,
  2.  , , ,
  3.  , , ,
  4.  , , ,

Вопрос 5

Дан неориентированный граф G = (V, E) и положительное целое число K, имеет ли G K вершин, которые образуют полный подграф, и если да, то каково минимальное значение K?

  1.  Ничего и перечисленного
  2.  3
  3.  2
  4.  4

Вопрос 6

Рассмотрим следующее AVL-дерево: [svg]

Если в данное дерево требуется вставить элемент со значением 12, сколько поворотов необходимо сделать для балансировки дерева?

  1.  3
  2.  1
  3.  0
  4.  2

Вопрос 7

Рассмотрим следующие утверждения об алгоритме обхода графа в глубину:

  • I. Предположим, мы запускаем DFS на неориентированном графе и находим ровно 15 обратных ребер. Тогда граф гарантированно будет иметь по крайней мере один цикл.
  • II. DFS на ориентированном графе с n вершинами и, по крайней мере, n ребрами гарантированно найдет хотя бы одно обратное ребро.

Какие из данных утверждений верны?

  1.  Только I
  2.  Только II
  3.  Ни одно
  4.  Оба

Вопрос 8

Какие из представленных ниже утверждений являются верными?

  • 1)
  • 2)
  • 3),  — константа
  • 4)
  1.  i, ii
  2.  i, ii, iv
  3.  i, ii, iii
  4.  ii, iii

Вопрос 9

Какое из следующих рекуррентных соотношений не может быть использовано для алгоритма быстрой сортировки?

  1.   
  2.  
  3.  
  4.  

Вопрос 10

Рассмотрим следующие выражения:

  • I. Диграф — это граф, имеющий ровно 2 вершины.
  • II. Остовное дерево в графе всегда должно содержать как минимум ребер.
  • III. Алгоритм сортировки ребер для решения задачи коммивояжера всегда дает оптимальный результат.

Какие утверждения верные, а какие нет?

  1.  II, III
  2.  I, III
  3.  I, II
  4.  Только II