Тест по Computer Science — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
Тест по Computer Science, подготовил Участник:Ssyrovatkin

Вариант 2136297061.


Ваше имя*:


Вопрос 1

Какое из следующих рекуррентных соотношений не может быть использовано для алгоритма быстрой сортировки?

  1.  
  2.  
  3.   
  4.  

Вопрос 2

Рассмотрим следующие утверждения (h(k) — хэш-функция):

  • I. если даже .
  • II. для любых .
  • III. для любых .
  1.  Только I
  2.  I, II, III
  3.  Только II, III
  4.  Только I, II

Вопрос 3

Рассмотрим следующие выражения:

  • I. Подсчет медианы из n элементов занимает времени для любого алгоритма, основанного на сравнении элементов.
  • II. Пусть T является минимальным остовным деревом для графа G. Тогда для любой пары вершин a и b кратчайший путь между ними в G является кратчайшим путем между ними в T.

Какие утверждения верные, а какие нет?

  1.  I-TRUE, II-TRUE
  2.  I-False, II-TRUE
  3.  I-TRUE, II-False
  4.  I-False, II-False

Вопрос 4

Пусть структура данных поддерживает операцию `foo`, таким образом, что последовательность из n операций `foo` занимает времени в худшем случае. Каково амортизационное время операции `foo`?

  1.  
  2.  
  3.  
  4.  

Вопрос 5

Хэш функция с линейным зондированием используется для вставки ключей 37, 38, 72, 68, 98, 11, 74 в хэш-таблицу с индексом (0-6). Какой индекс соответствует ключу 74?

  1.  4
  2.  2
  3.  3
  4.  1

Вопрос 6

Рассмотрим массив из n элементов. Какую временную сложность имеет алгоритм поиска максимальной суммы трех элементов в массиве?

  1.  
  2.  
  3.  
  4.  

Вопрос 7

Рассмотрим следующие утверждения:

  • Пусть n — это число элементов в массиве
  • В процессе сортировки массива происходит порядка уровней
  • На каждом уровне происходит порядка действий

Для какого алгоритма сортировки все утверждения являются верными?

  1.  Сортировка выбором
  2.  Сортировка кучей
  3.  Сортировка слиянием
  4.  Сортировка пузырьком

Вопрос 8

Пусть имеется два отсортированных списка размера K и L соответственно. Сколько потребуется сравнений элементов, для того чтобы получить отсортированный список размера K + L, состоящий из элементов этих списков?

  1.  
  2.  
  3.  
  4.  

Вопрос 9

Алгоритм Беллмана-Форда решает задачу кратчайшего пути из вершины в случае, когда веса ребер могут быть отрицательными, какова временная сложность выполнения алгоритма Беллмана-Форда?

  1.  
  2.  
  3.  
  4.  

Вопрос 10

Пусть дана последовательность n случайных чисел. Какая будет временная сложность для вычисления медианы данного массива?

  1.  
  2.  
  3.  
  4.