Вариант 872840578.
Строгий анализ некоторого алгоритма, обнаружил, что как только размер входа превосходит некоторую константу M, время выполнения алгоритма, T(n), становится не больше, чем куб от длины входа умноженный на константу, что для всех входов длины n
Рассмотрим утверждения:
Проведем BFS-поиск (поиск в ширину), кратчайшего пути из A в Z:
[svg]
В каком порядке алгоритм посетит вершины?
Рассмотрим дерево: [svg]
Что нельзя о нем сказать?
Рассмотрим программу на C++:
#include <stdio.h> int void main() { int j=0, k=0; f(j); cout << j + k; } void f (int& i) { k = i + 3; i = k * i; }
Напомним, что в C/C++, «int& i» — означает передачу целого параметра по ссылке.
Какое значение выведет программа?
Рассмотрим фрагмент программы на C:
int fibo (int n) { if (n<2) return n; else return fibo(n-1)+fibo(n-2); }
Чтобы найти время выполнения T(n) для «fibo», предположим, что для некоторых констант a и b
Следующим шагом, определим рекуррентное соотношение, которое, если решить, будет определять время работы T(n) через константы a и b. Выберите правильное.
Отсортированный список из 500 чисел хранится в индексированном массиве. Чтобы найти определенный элемент-число, какое максимальное число поисковых операций нужно при…
Что fibo вернет для n=7?
Рассмотрим алгоритмы-политики планировщика процессов:
Какие предотвращают «ресурсное голодание»?
Рассмотрим граф перехода конечного автомата (конечного преобразователя), пусть самое правое состояние у него будет принимающим.
Что неверно?
Теоретически возможно реализовать любую комбинаторную логику используя только «NAND» или «NOR» узлы. Какие плюсы наличия более широкого класса логических вентилей при проектировании? Рассмотрим гипотезы: