Вариант 2955314134.
Строгий анализ некоторого алгоритма, обнаружил, что как только размер входа превосходит некоторую константу M, время выполнения алгоритма, T(n), становится не больше, чем куб от длины входа умноженный на константу, что для всех входов длины n
Рассмотрим утверждения:
Рассмотрим фрагмент программы на C:
int fibo (int n) { if (n<2) return n; else return fibo(n-1)+fibo(n-2); }
Чтобы найти время выполнения T(n) для «fibo», предположим, что для некоторых констант a и b
Следующим шагом, определим рекуррентное соотношение, которое, если решить, будет определять время работы T(n) через константы a и b. Выберите правильное.
Теоретически возможно реализовать любую комбинаторную логику используя только «NAND» или «NOR» узлы. Какие плюсы наличия более широкого класса логических вентилей при проектировании? Рассмотрим гипотезы:
Какое число не может быть точно представлено в виде float?
Рассмотрим алгоритмы-политики планировщика процессов:
Какие предотвращают «ресурсное голодание»?
На этой картинке
Пусть у нас есть регулярные выражения R и S:
R = (ab)|a S = (bc)|c
Какое слово может быть в языке L(RS)?
Рассмотрим граф перехода конечного автомата (конечного преобразователя), пусть самое правое состояние у него будет принимающим.
Что неверно?
Рассмотрим контекстно-свободную грамматику G1:
<Exp> → <Exp> + <Exp> | <Exp> - <Exp> <Exp> → <Exp> * <Exp> | <Exp> / <Exp> <Exp> → <Id> <Id> → a | b | c | … | y | z
Затем, рассмотрим ее модификацию G2:
<Exp> → <Term> | <Exp> + <Term> | <Exp> - <Term> <Term> → <Factor> | <Term> * <Factor> | <Term> / <Factor> <Factor> → <Id> <Id> → a | b | c | … | y | z
Теперь рассмотрим утверждения:
Рассмотрим программу на C++:
#include <stdio.h> int void main() { int j=0, k=0; f(j); cout << j + k; } void f (int& i) { k = i + 3; i = k * i; }
Напомним, что в C/C++, «int& i» — означает передачу целого параметра по ссылке.
Какое значение выведет программа?