Сложность алгоритмов — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
11121314151617181920
21222324252627282930
31323334353637383940
41424344454647484950
51525354
Тест по курсу «Сложность алгоритмов»

Вариант 1681755190.


Ваше имя*:


Вопрос 1

Какой класс ошибок допускают алгоритмы решающие задачи из класса PP?

  1.  двусторонние
  2.  односторонние
  3.  «PP»-ошибки
  4.  трехсторонние

Вопрос 2

Что верно для NP-полных и NP-трудных задач:

  1.  Первой задачей с доказанной NP-полнотой была CircuitSAT, «the circuit satisfiability problem»
  2.  
  3.  Если мы хотим доказать, что задача X — NP-трудна, мы берем известную NP-полную задачу Y и сводим ее полиномиально по Карпу к X.
  4.  Все варианты, кроме «ничего не верно»
  5.  Ничего не верно.

Вопрос 3

Является ли пустое множество разрешимым?

  1.  Нет;
  2.  Да;

Вопрос 4

Предположим, открыли полиномиальный алгоритм, вычисляющий наибольшую клику в заданном графе. Что тогда будет, согласно вариантам на картинке?

NPC-GQ08.png


  1.  B
  2.  D
  3.  A
  4.  Все остальные варианты — неверны.
  5.  C

Вопрос 5

Какой из этих тестов на простоту не является рандомизированным:

  1.  Бейли — Померанца — Селфриджа — Уогстаффа,
  2.  Бейли — Померанца — Селфриджа — Уогстаффа
  3.  Миллера
  4.  Миллера-Рабина
  5.  Все существующие тесты на простоту являются рандомизированными

Вопрос 6

Какова точность, гарантируемая жадным алгоритмом в задаче о покрытии?

  1.  
  2.  
  3.  3
  4.  

Вопрос 7

Какой класс ошибок допускают алгоритмы решающие задачи из класса BPP?

  1.  «BP»-ошибки
  2.  односторонние
  3.  трехсторонние
  4.  двусторонние

Вопрос 8

Пусть X — задача из NP. Что верно?

  1.  Если X — NP-hard, то она NP-полная
  2.  Нет полиномиального алгоритма для X
  3.  Если X можно решить за полиномиальное время на ДМТ, то P=NP
  4.  X — NP-трудная
  5.  X может быть неразрешима
  6.  Все остальные варианты — неверны.

Вопрос 9

Является ли разрешимым множество натуральных чисел, не превосходящих :

  1.  Да
  2.  Нет
  3.  Неизвестно, поскольку ответ на этот вопрос следует из истинности\ложности гипотезы Римана;

Вопрос 10

Задачи 3SAT и 2SAT:

  1.  Первая NP-полна и вторая в P.
  2.  Все остальные варианты — неверны.
  3.  Первая неразрешима и вторая — NP-полна.
  4.  Обе в P
  5.  Обе NP-полны

Вопрос 11

Какова точность, гарантируемая жадным алгоритмом в задаче о k-покрытии?

  1.  
  2.  
  3.  
  4.  3
  5.  
  6.  

Вопрос 12

Гамильтонов цикл в графе:

  1.  проходит через все вершины по одному разу
  2.  проходит через все ребра по одному разу
  3.  проходит через все вершины и ребра по одному разу

Вопрос 13

Паросочетание, это подмножество...


  1.  связных подграфов
  2.  циклов
  3.  вершин
  4.  ребер

Вопрос 14

Возможно ли сконструировать алгоритм , который для произвольной машины Тюринга и входа определит, остановится ли данная М.Т. на заданном входе?

  1.  Формально да, но никто не знает как именно это сделать (примерно как со вполне упорядочиванием );
  2.  Нет
  3.  Да, известно чёткое описание того, как это делать;

Вопрос 15

Пусть S — задача из NPC, а Q и R — тоже задачи, но про них известно только, что Q — полиномиально сводиться по Карпу к S, а S — к R.

Что будет верно?

  1.  Q — NP-трудная
  2.  R — NP-полная
  3.  Q — NP-полная
  4.  R — NP-трудная

Вопрос 16

Существует ли алгоритм, который выписывает одну за другой все машины Тьюринга, которые останавливаются, будучи запущенными на пустой ленте?

  1.  Нет
  2.  Да

Вопрос 17

Выберите верное утверждение


  1.  Из сводимости по Карпу следует сводимость по Куку
  2.  Верного ответа нет
  3.  Из сводимости по Куку следует сводимость по Карпу

Вопрос 18

Замкнутость по какой из операций выполнена как для разрешимых, так и для перечислимых языков?

  1.  Декартово произведение;
  2.  Дополнение;
  3.  Разность множеств;

Вопрос 19

Существует ли биекция между классами и ?

  1.  Ответ на этот вопрос нет, т.к. нам ничего неизвестно про равенство классов и ;
  2.  Да, существует;
  3.  Нет, не существует;

Вопрос 20

Выберите не NP-полную задачу

  1.  Вершинное покрытие
  2.  2SAT
  3.  3SAT
  4.  Сумма множеств
  5.  SAT
  6.  TSP-выполнимость
  7.  Клика (есть ли в графе клика больше заданной)

Вопрос 21

В теме про полиномиальный в среднем алгоритм для «SAT» мы применяли формулу…


  1.  Флойда-Уоршолла
  2.  Немхаузера-Ульмана
  3.  Форда-Фалкерсона
  4.  Беллмана-Форда
  5.  Включений-Исключений

Вопрос 22

Какие из подходов к решению вычислительно трудных задач изучались в курсе?

  1.  Построение эффективных приближенных алгоритмов с оценками точности в худшем случае
  2.  Построение эффективных эвристических алгоритмов
  3.  Построение точных алгоритмов с субэкспоненциальными оценками сложности

Вопрос 23

Выберите верное следствие:

  1.  Из разрешимости множества следует его ко-разрешимость;
  2.  Из перечислимости множества следует его ко-перечислимость;
  3.  Ничего из этого не является верным;

Вопрос 24

Какова сложность вероятностного алгоритма Фрейвалда для проверки тождества AB=C для матриц  ?

  1.  
  2.  
  3.  
  4.  

Вопрос 25

Метод многократного запуска вероятностного алгоритма, с целью уменьшения вероятности ошибки называется:

  1.  «отладка вероятности»
  2.  «дерандомизация»
  3.  «вероятностная амплификация»
  4.  «антирандомизация»

Вопрос 26

В работах по теории сложности алгоритм называется полиномиальным в среднем, если для входов длины n и времени работы алгоритма T, выполняется:

  1.  
  2.  
  3.  
  4.  

Вопрос 27

У языков L1-L4 доказаны следующие полиномиальные сводимости по Карпу: «L1→L2», «L3→L2→L4» Рассмотрим утверждения:

I
Если L4 в P, то L2 в P
II
Если L1 или L3 в P, то L2 в P
III
L1 в P, тогда и только тогда, когда L3 в P
IV
Если L4 в P, то L1 в P и L3 в P.


  1.  Все остальные варианты — неверны.
  2.  Только (III)
  3.  Только (I)
  4.  Только (II)
  5.  Только (I) и (IV)

Вопрос 28

Выберите верное верное утверждение из списка ниже, если верных вариантов ответа несколько, то выберите наиболее сильный из них:

  1.  Нет верного ответа;
  2.  Из разрешимости множества следует его перечислимость;
  3.  Из перечислимости множества следует его разрешимость;
  4.  Перечислимые и разрешимые множества никак не пересекаются;

Вопрос 29

Какой класс ошибок допускают алгоритмы решающие задачи из класса ZPP?

  1.  никакие
  2.  трехсторонние
  3.  «ZPP»-ошибки
  4.  двусторонние
  5.  односторонние (при ответе «1»)
  6.  односторонние (при ответе «0»)

Вопрос 30

Какова точность, гарантируемая гибридным вероятностным алгоритмом из темы про вероятностное округление MAX-SAT?


  1.  
  2.  
  3.  
  4.  
  5.  

Вопрос 31

Выберите общепринятое определение класса NPC (NP-полных задач).

тогда и только тогда, когда:

  1.  
  2.  
  3.  
  4.  
  5.  
  6.  
  7.  
  8.  

Вопрос 32

Задача 2SAT:

  1.  Все остальные варианты — неверны.
  2.  NP-полна
  3.  NP-трудна, но не NP-полна.
  4.  разрешима за полиномиальное время, но не за константное время.
  5.  разрешима за константное время, т.к. любой вход для такой задачи выполним.

Вопрос 33

Множество S является разрешимым, тогда и только тогда, когда существует такая машина Тьюринга T, что:

  1.  , то T останавливается и выводит 0
  2.  , то T останавливается и выводит 1, а если , то T зацикливается
  3.  , то T останавливается и выводит 1
  4.  , то T останавливается и выводит 1, а если , то T останавливается и выводит 0

Вопрос 34

Рассмотрим пару задач на графах.

P1
Для заданного графа, подтвердить или опровергнуть, что в нем есть цикл, которые посещает однократно все вершины, кроме первой, в которую надо вернутся, чтобы завершить цикл.
P2

Для заданного графа, подтвердить или опровергнуть, что в нем есть цикл, который проходит по каждому ребру точно один раз, без исключений.

  1.  Обе в NPC
  2.  X в NP, но не NP-полная.
  3.  P1 в NPC, P2 в P.
  4.  P2 в NPC, P1 в P.
  5.  Обе в P
  6.  Все остальные варианты — неверны.

Вопрос 35

Какие из подходов к решению вычислительно трудных задач изучались в курсе?

  1.  Построение эффективных в среднем алгоритмов
  2.  Применение эволюционных алгоритмов
  3.  Построение эффективных алгоритмов муравьиной колонии

Вопрос 36

Выберите верное утверждение


  1.  ;
  2.  ;
  3.  

Вопрос 37

Какие условия на существование полиномиального в среднем алгоритма для «SAT» требуются в соответствующей теме?

Напомним, что у нас n переменных и m скобок, p — вероятность появления переменной в каждой скобке.


  1.  
  2.  
  3.  
  4.  
  5.  

Вопрос 38

Формулировка (в виде ЦЛП) какой задачи приведена ниже:

  1.  MAX-3SAT
  2.  MAX-SAT
  3.  MIN-CUT
  4.  MAX-CUT
  5.  MIN-SAT

Вопрос 39

Вероятностные «zero-error»-алгоритмы:

  1.  Всегда дают верный ответ в случае, если возвращают «0»
  2.  Могут ошибаться, но только в случае, если возвращают «0»
  3.  Всегда дают верный ответ
  4.  Когда дают ответ он правильный, но могут отвечать «не знаю»

Вопрос 40

Какие из подходов к решению вычислительно трудных задач изучались в курсе?

  1.  Построение недетерминированных полиномиальных алгоритмов
  2.  Построение эффективных алгоритмов методом ветвей и границ
  3.  Построение эффективных приближенных алгоритмов, использующих метод вероятностного округления решений релаксационных задач

Вопрос 41

Предположим, разумеется, что Тогда что будет верно?

  1.  
  2.  
  3.  
  4.  

Вопрос 42

Пусть

  • — задача поиска гамильтонового цикла в графе , где V — делится на 3.
  • — задача подтверждения наличия гамильтонового цикла в таком графе.

Что верно?

  1.  Они обе не NP-hard.
  2.   и — NP-трудны.
  3.   — NP-hard, но не .
  4.   — NP-hard, но не .
  5.  Все остальные варианты — неверны.

Вопрос 43

Пусть сводится по Карпу к . Выберите верное утверждение:

  1.  Если , то ;
  2.  Если , то ;
  3.  Если , то ;

Вопрос 44

В теме про полиномиальный в среднем алгоритм для «SAT» наш алгоритм…

  1.  Вероятностно подсчитывал число невыполненных наборов
  2.  Вероятностно подсчитывал число выполненных наборов
  3.  Подсчитывал число невыполненных наборов
  4.  Заполнял таблицу «наиболее выполняющими» наборами
  5.  Находит приближенное решение, с точностью
  6.  Точность решения в среднем —

Вопрос 45

Аню и Колю попросили показать, что задача X — NP-полна. Аня показала полиномиальную сводимость по Карпу от 3SAT к X, а Коля показал полиномиальную сводимость по Карпу от X к 3SAT.

Что можно утверждать?

  1.  X — NP-полная.
  2.  X — NP-трудная, но не NP-полная.
  3.  X в NP, но не NP-полная.
  4.  Все остальные варианты — неверны.
  5.  X — не NP-полная, и вообще не в NP.

Вопрос 46

Пересечение двух каких классов окажется пустым, если окажется, что ?

  1.   и ;
  2.   и ;
  3.   и ;

Вопрос 47

Будет ли класс -полных задач замкнутым относительно сводимости по Карпу, если окажется, что ?

  1.  Нет;
  2.  Да;

Вопрос 48

Цикл, проходящий через все вершины графа, называется

  1.  Эйлеров цикл
  2.  Гамильтонов цикл
  3.  Петля Нестерова
  4.  Наполеонов цикл
  5.  Цикл Нельсона

Вопрос 49

Существует ли алгоритм, который выписывает одну за другой все машины Тьюринга, которые не останавливаются, будучи запущенными на пустой ленте?

  1.  Нет
  2.  Да

Вопрос 50

  1.  
  2.  
  3.  
  4.  
  5.  

Вопрос 51

Какие из подходов к решению вычислительно трудных задач изучались в курсе?

  1.  Построение эффективных вероятностных приближенных алгоритмов с оценками точности в худшем случае
  2.  Построение эффективных метаэвристик
  3.  Применение теории генетических алгоритмов

Вопрос 52

Рассмотрим две задачи разрешения, P1 и P2, такие что

  • P1 сводится полиномиально по Карпу к 3SAT
  • 3SAT сводится полиномиально по Карпу к P2

Что можно утверждать?


  1.  Обе в NP-hard
  2.  P1 в NP, P2 в NP-hard
  3.  Обе в NP
  4.  P2 в NP, P1 в NP-hard
  5.  Все остальные варианты — неверны.

Вопрос 53

Является ли конкатенация двух разрешимых языков перечислимой?

  1.  Да;
  2.  Нет;

Вопрос 54

Пусть задача A — «есть ли цикл в ненаправленном графе». Рассмотрим набор утверждений.


  • (1) Задача A — в P
  • (2) Задача A — в NP
  • (3) Если задача A — NP-полна, то существует НМТ, решающая A за полиномиальное время.

Что верно?

  1.  2 и 3
  2.  1, 2 и 3
  3.  1 и 3
  4.  1 и 2
  5.  Все остальные варианты — неверны.