Сложность алгоритмов — вопросы

Материал из DISCOPAL
Перейти к: навигация, поиск
12345678910
11121314151617181920
21222324252627282930
31323334353637383940
41424344454647484950
51525354
Тест по курсу «Сложность алгоритмов»

Вариант 94133261.


Ваше имя*:


Вопрос 1

Предположим, открыли полиномиальный алгоритм, вычисляющий наибольшую клику в заданном графе. Что тогда будет, согласно вариантам на картинке?

NPC-GQ08.png


  1.  C
  2.  D
  3.  Все остальные варианты — неверны.
  4.  A
  5.  B

Вопрос 2

Вероятностные «zero-error»-алгоритмы:

  1.  Когда дают ответ он правильный, но могут отвечать «не знаю»
  2.  Всегда дают верный ответ
  3.  Могут ошибаться, но только в случае, если возвращают «0»
  4.  Всегда дают верный ответ в случае, если возвращают «0»

Вопрос 3

Задачи 3SAT и 2SAT:

  1.  Все остальные варианты — неверны.
  2.  Первая NP-полна и вторая в P.
  3.  Обе NP-полны
  4.  Обе в P
  5.  Первая неразрешима и вторая — NP-полна.

Вопрос 4

Замкнутость по какой из операций выполнена как для разрешимых, так и для перечислимых языков?

  1.  Декартово произведение;
  2.  Дополнение;
  3.  Разность множеств;

Вопрос 5

Возможно ли сконструировать алгоритм , который для произвольной машины Тюринга и входа определит, остановится ли данная М.Т. на заданном входе?

  1.  Да, известно чёткое описание того, как это делать;
  2.  Нет
  3.  Формально да, но никто не знает как именно это сделать (примерно как со вполне упорядочиванием );

Вопрос 6

Пусть

  • — задача поиска гамильтонового цикла в графе , где V — делится на 3.
  • — задача подтверждения наличия гамильтонового цикла в таком графе.

Что верно?

  1.  Все остальные варианты — неверны.
  2.   — NP-hard, но не .
  3.   и — NP-трудны.
  4.  Они обе не NP-hard.
  5.   — NP-hard, но не .

Вопрос 7

Пусть сводится по Карпу к . Выберите верное утверждение:

  1.  Если , то ;
  2.  Если , то ;
  3.  Если , то ;

Вопрос 8

Является ли разрешимым множество натуральных чисел, не превосходящих :

  1.  Неизвестно, поскольку ответ на этот вопрос следует из истинности\ложности гипотезы Римана;
  2.  Нет
  3.  Да

Вопрос 9

Какие условия на существование полиномиального в среднем алгоритма для «SAT» требуются в соответствующей теме?

Напомним, что у нас n переменных и m скобок, p — вероятность появления переменной в каждой скобке.


  1.  
  2.  
  3.  
  4.  
  5.  

Вопрос 10

Рассмотрим пару задач на графах.

P1
Для заданного графа, подтвердить или опровергнуть, что в нем есть цикл, которые посещает однократно все вершины, кроме первой, в которую надо вернутся, чтобы завершить цикл.
P2

Для заданного графа, подтвердить или опровергнуть, что в нем есть цикл, который проходит по каждому ребру точно один раз, без исключений.

  1.  P1 в NPC, P2 в P.
  2.  Обе в P
  3.  Все остальные варианты — неверны.
  4.  X в NP, но не NP-полная.
  5.  P2 в NPC, P1 в P.
  6.  Обе в NPC

Вопрос 11

Выберите верное утверждение


  1.  Из сводимости по Куку следует сводимость по Карпу
  2.  Верного ответа нет
  3.  Из сводимости по Карпу следует сводимость по Куку

Вопрос 12

В работах по теории сложности алгоритм называется полиномиальным в среднем, если для входов длины n и времени работы алгоритма T, выполняется:

  1.  
  2.  
  3.  
  4.  

Вопрос 13

Является ли пустое множество разрешимым?

  1.  Нет;
  2.  Да;

Вопрос 14

Предположим, разумеется, что Тогда что будет верно?

  1.  
  2.  
  3.  
  4.  

Вопрос 15

Рассмотрим две задачи разрешения, P1 и P2, такие что

  • P1 сводится полиномиально по Карпу к 3SAT
  • 3SAT сводится полиномиально по Карпу к P2

Что можно утверждать?


  1.  Обе в NP-hard
  2.  P1 в NP, P2 в NP-hard
  3.  Все остальные варианты — неверны.
  4.  P2 в NP, P1 в NP-hard
  5.  Обе в NP

Вопрос 16

Какие из подходов к решению вычислительно трудных задач изучались в курсе?

  1.  Построение точных алгоритмов с субэкспоненциальными оценками сложности
  2.  Построение эффективных приближенных алгоритмов с оценками точности в худшем случае
  3.  Построение эффективных эвристических алгоритмов

Вопрос 17

Является ли конкатенация двух разрешимых языков перечислимой?

  1.  Да;
  2.  Нет;

Вопрос 18

Какие из подходов к решению вычислительно трудных задач изучались в курсе?

  1.  Построение эффективных в среднем алгоритмов
  2.  Применение эволюционных алгоритмов
  3.  Построение эффективных алгоритмов муравьиной колонии

Вопрос 19

Какова точность, гарантируемая жадным алгоритмом в задаче о покрытии?

  1.  
  2.  
  3.  3
  4.  

Вопрос 20

Задача 2SAT:

  1.  разрешима за полиномиальное время, но не за константное время.
  2.  Все остальные варианты — неверны.
  3.  NP-полна
  4.  NP-трудна, но не NP-полна.
  5.  разрешима за константное время, т.к. любой вход для такой задачи выполним.

Вопрос 21

В теме про полиномиальный в среднем алгоритм для «SAT» наш алгоритм…

  1.  Точность решения в среднем —
  2.  Вероятностно подсчитывал число невыполненных наборов
  3.  Заполнял таблицу «наиболее выполняющими» наборами
  4.  Находит приближенное решение, с точностью
  5.  Подсчитывал число невыполненных наборов
  6.  Вероятностно подсчитывал число выполненных наборов

Вопрос 22

Формулировка (в виде ЦЛП) какой задачи приведена ниже:

  1.  MAX-SAT
  2.  MAX-CUT
  3.  MAX-3SAT
  4.  MIN-CUT
  5.  MIN-SAT

Вопрос 23

Пересечение двух каких классов окажется пустым, если окажется, что ?

  1.   и ;
  2.   и ;
  3.   и ;

Вопрос 24

Множество S является разрешимым, тогда и только тогда, когда существует такая машина Тьюринга T, что:

  1.  , то T останавливается и выводит 0
  2.  , то T останавливается и выводит 1
  3.  , то T останавливается и выводит 1, а если , то T зацикливается
  4.  , то T останавливается и выводит 1, а если , то T останавливается и выводит 0

Вопрос 25

Существует ли алгоритм, который выписывает одну за другой все машины Тьюринга, которые не останавливаются, будучи запущенными на пустой ленте?

  1.  Да
  2.  Нет

Вопрос 26

Что верно для NP-полных и NP-трудных задач:

  1.  Если мы хотим доказать, что задача X — NP-трудна, мы берем известную NP-полную задачу Y и сводим ее полиномиально по Карпу к X.
  2.  Ничего не верно.
  3.  
  4.  Первой задачей с доказанной NP-полнотой была CircuitSAT, «the circuit satisfiability problem»
  5.  Все варианты, кроме «ничего не верно»

Вопрос 27

Выберите общепринятое определение класса NPC (NP-полных задач).

тогда и только тогда, когда:

  1.  
  2.  
  3.  
  4.  
  5.  
  6.  
  7.  
  8.  

Вопрос 28

Пусть S — задача из NPC, а Q и R — тоже задачи, но про них известно только, что Q — полиномиально сводиться по Карпу к S, а S — к R.

Что будет верно?

  1.  Q — NP-полная
  2.  Q — NP-трудная
  3.  R — NP-трудная
  4.  R — NP-полная

Вопрос 29

Какова точность, гарантируемая жадным алгоритмом в задаче о k-покрытии?

  1.  
  2.  
  3.  3
  4.  
  5.  
  6.  

Вопрос 30

Какой из этих тестов на простоту не является рандомизированным:

  1.  Миллера-Рабина
  2.  Бейли — Померанца — Селфриджа — Уогстаффа,
  3.  Все существующие тесты на простоту являются рандомизированными
  4.  Бейли — Померанца — Селфриджа — Уогстаффа
  5.  Миллера

Вопрос 31

Выберите верное верное утверждение из списка ниже, если верных вариантов ответа несколько, то выберите наиболее сильный из них:

  1.  Перечислимые и разрешимые множества никак не пересекаются;
  2.  Нет верного ответа;
  3.  Из разрешимости множества следует его перечислимость;
  4.  Из перечислимости множества следует его разрешимость;

Вопрос 32

В теме про полиномиальный в среднем алгоритм для «SAT» мы применяли формулу…


  1.  Немхаузера-Ульмана
  2.  Форда-Фалкерсона
  3.  Флойда-Уоршолла
  4.  Беллмана-Форда
  5.  Включений-Исключений

Вопрос 33

Существует ли биекция между классами и ?

  1.  Нет, не существует;
  2.  Да, существует;
  3.  Ответ на этот вопрос нет, т.к. нам ничего неизвестно про равенство классов и ;

Вопрос 34

Какова сложность вероятностного алгоритма Фрейвалда для проверки тождества AB=C для матриц  ?

  1.  
  2.  
  3.  
  4.  

Вопрос 35

У языков L1-L4 доказаны следующие полиномиальные сводимости по Карпу: «L1→L2», «L3→L2→L4» Рассмотрим утверждения:

I
Если L4 в P, то L2 в P
II
Если L1 или L3 в P, то L2 в P
III
L1 в P, тогда и только тогда, когда L3 в P
IV
Если L4 в P, то L1 в P и L3 в P.


  1.  Только (I)
  2.  Только (III)
  3.  Все остальные варианты — неверны.
  4.  Только (II)
  5.  Только (I) и (IV)

Вопрос 36

Аню и Колю попросили показать, что задача X — NP-полна. Аня показала полиномиальную сводимость по Карпу от 3SAT к X, а Коля показал полиномиальную сводимость по Карпу от X к 3SAT.

Что можно утверждать?

  1.  X в NP, но не NP-полная.
  2.  X — не NP-полная, и вообще не в NP.
  3.  X — NP-полная.
  4.  X — NP-трудная, но не NP-полная.
  5.  Все остальные варианты — неверны.

Вопрос 37

Какие из подходов к решению вычислительно трудных задач изучались в курсе?

  1.  Построение недетерминированных полиномиальных алгоритмов
  2.  Построение эффективных приближенных алгоритмов, использующих метод вероятностного округления решений релаксационных задач
  3.  Построение эффективных алгоритмов методом ветвей и границ

Вопрос 38

Выберите верное утверждение


  1.  ;
  2.  
  3.  ;

Вопрос 39

Пусть задача A — «есть ли цикл в ненаправленном графе». Рассмотрим набор утверждений.


  • (1) Задача A — в P
  • (2) Задача A — в NP
  • (3) Если задача A — NP-полна, то существует НМТ, решающая A за полиномиальное время.

Что верно?

  1.  1, 2 и 3
  2.  Все остальные варианты — неверны.
  3.  1 и 2
  4.  1 и 3
  5.  2 и 3

Вопрос 40

Выберите верное следствие:

  1.  Ничего из этого не является верным;
  2.  Из перечислимости множества следует его ко-перечислимость;
  3.  Из разрешимости множества следует его ко-разрешимость;

Вопрос 41

Какие из подходов к решению вычислительно трудных задач изучались в курсе?

  1.  Построение эффективных вероятностных приближенных алгоритмов с оценками точности в худшем случае
  2.  Построение эффективных метаэвристик
  3.  Применение теории генетических алгоритмов

Вопрос 42

Какой класс ошибок допускают алгоритмы решающие задачи из класса BPP?

  1.  двусторонние
  2.  «BP»-ошибки
  3.  односторонние
  4.  трехсторонние

Вопрос 43

  1.  
  2.  
  3.  
  4.  
  5.  

Вопрос 44

Какова точность, гарантируемая гибридным вероятностным алгоритмом из темы про вероятностное округление MAX-SAT?


  1.  
  2.  
  3.  
  4.  
  5.  

Вопрос 45

Выберите не NP-полную задачу

  1.  2SAT
  2.  Сумма множеств
  3.  SAT
  4.  Вершинное покрытие
  5.  TSP-выполнимость
  6.  3SAT
  7.  Клика (есть ли в графе клика больше заданной)

Вопрос 46

Существует ли алгоритм, который выписывает одну за другой все машины Тьюринга, которые останавливаются, будучи запущенными на пустой ленте?

  1.  Да
  2.  Нет

Вопрос 47

Пусть X — задача из NP. Что верно?

  1.  Если X — NP-hard, то она NP-полная
  2.  X — NP-трудная
  3.  Все остальные варианты — неверны.
  4.  Если X можно решить за полиномиальное время на ДМТ, то P=NP
  5.  X может быть неразрешима
  6.  Нет полиномиального алгоритма для X

Вопрос 48

Какой класс ошибок допускают алгоритмы решающие задачи из класса PP?

  1.  трехсторонние
  2.  двусторонние
  3.  односторонние
  4.  «PP»-ошибки

Вопрос 49

Цикл, проходящий через все вершины графа, называется

  1.  Гамильтонов цикл
  2.  Петля Нестерова
  3.  Наполеонов цикл
  4.  Эйлеров цикл
  5.  Цикл Нельсона

Вопрос 50

Гамильтонов цикл в графе:

  1.  проходит через все вершины по одному разу
  2.  проходит через все вершины и ребра по одному разу
  3.  проходит через все ребра по одному разу

Вопрос 51

Какой класс ошибок допускают алгоритмы решающие задачи из класса ZPP?

  1.  односторонние (при ответе «0»)
  2.  односторонние (при ответе «1»)
  3.  двусторонние
  4.  никакие
  5.  трехсторонние
  6.  «ZPP»-ошибки

Вопрос 52

Паросочетание, это подмножество...


  1.  вершин
  2.  ребер
  3.  циклов
  4.  связных подграфов

Вопрос 53

Будет ли класс -полных задач замкнутым относительно сводимости по Карпу, если окажется, что ?

  1.  Нет;
  2.  Да;

Вопрос 54

Метод многократного запуска вероятностного алгоритма, с целью уменьшения вероятности ошибки называется:

  1.  «антирандомизация»
  2.  «отладка вероятности»
  3.  «вероятностная амплификация»
  4.  «дерандомизация»