Курс «Эффективные алгоритмы» для МФТИ — различия между версиями
StasFomin (обсуждение | вклад) (→Блок 3) |
StasFomin (обсуждение | вклад) |
||
Строка 138: | Строка 138: | ||
Те, кто по результатам предущих блоков вышел на «хор», смогут улучшить оценку (но не затягивайте, держите в курсе, если это делаете). | Те, кто по результатам предущих блоков вышел на «хор», смогут улучшить оценку (но не затягивайте, держите в курсе, если это делаете). | ||
---- | ---- | ||
− | {{ | + | {{:НаучныйПоиск}} |
Версия 11:24, 9 декабря 2022
- 2024-11-18: Feedback по GRE-квестам ← Advanced Algorithms
- 2024-11-10: Feedback по GRE-квестам ← Advanced Algorithms
- 2024-11-01: Уважаемые все пропустившие… ← Advanced Algorithms
- 2024-11-01: Feedback ← Advanced Algorithms
- 2024-10-31: Feedback ← Advanced Algorithms
- 2024-10-30: Feedback ← Advanced Algorithms
- 2024-10-14: Feedback ← Advanced Algorithms
Курс лекций «Эффективные алгоритмы» для 6 курса МФТИ.
Кратко, что будет, чего не будет и что ждать.
- Лекций — не будет. Это бред и бессмыслица, особенно при дистанционке. Созвоны будут при небходимости, в формате семинара, может индивидуальные.
- Будет путешествие-квест, с разными активностями.
- Берем только практические вещи — алгоритмы для разных задач, особенно NP-полных.
- Условно будет три блока
- Теоретический — прочитать темы, посмотреть записи лекций, пройти тестирование, возможно решить некоторые теорзадачи.
- Тут будет первый отсев — если не проходите тесты (отсеим, скажем, 25% нижних), то «досвидания».
- Не рекламируйте этот курс — чем меньше народу, тем будет лучше. Я заинтересован сократить численность всеми способами. Особенно нафиг я посылаю всех, кто пытается запрыгнуть в курс в середине семестра и позже. Без шансов. Когда-то прогибался в виде исключения, сейчас не буду.
- Легкий практический — решение нескольки задач, даваемых на собеседованиях в IT-компаниях, типа LeetCoding, SpojCoding, CodeChefing и т.п.
- Тут будет второй отсев — но можно будет тут свалить, получив «уд» — кому нужно время, и не очень все это интересно.
- Теор-практический — взять некоторую тему из заданных (свежая статья, я отберу), и сделать ее разбор-презентацию-реализацию в каком-нибудь jupyter или cocalc-ноутбуке (там будет видно). Тут возможно будет и индивидуальная работа и может тренировка презентейшн скиллс, что полезно для ваших дипломов (сколько я смотрел защит, все ужасно).
Ну остальные новости будут в группе, если что. Вопросы тоже там или напрямую.
Как зарегистрироваться — написано на основной странице курса, где все и будет https://discopal.ispras.ru/Advanced-algorithms
Регистраций открыта до 15 октября.
Подумайте еще раз — надо ли вам это. «Халявы», «Лекций», «Оценок за удаленную посещаемость» тут не будет. Даже «уд. нахаляву». Посмотрите, вокруг полно интересных курсов по выбору.
- Преподаватель
- С.А. Фомин
Для ФУПМов 6 курса, желающих записаться на курс по выбору «Эффективные алгоритмы», нужно:
- Зарегистрироваться здесь. Залогинится.
- Зайти на страницу настроек, указать свой email и подтвердить его.
- На своей личной странице (это не страница настроек, это то, что сверху слева, с иконкой человечка), написать хотя бы ФИО и группу.
- Боже, как много народу с рассеянным вниманием уже до сюда не дочитывает.
-
Присоединится к телеграмм-группе→ все, два месяца прошло, набор закрыт. - Отметится в этом голосовании:
Записываемся на курс «Advanced Algorithms-2022»?
|
Вы должны войти в систему, чтобы участвовать в этом голосовании.
- Установочный созвон будет наверно 9 сентября, раньше обычно бессмысленно.
Формат flipped classroom — т.е. по существующим материалам не будем повторять лекции, встречаться будем только для семинаров, и активной работы (решение задач, разбор сложных моментов, что-нибудь интересное придумаю) по заранее изученным материалам.
Вопросы пишите на почту, или задавайте в группе.
- Проблемы → Стасу Фомину
В списке вы можете видеть разные цифры, отражающие вашу активность по темам курса. В конце — некоторые суммарные метрики, рассчитанные по волшебным формулам.
Если вы в зеленой группе — вы кандидат на «отлично автоматом».
Содержание
Блок 1
Концептуально:
- Win-Win!
- Абсолютно практические задачи с собеседований.
- LeetCode
- CodeChef
- SpojCode
- Сотни решенных и нерешенных
- Условно поделены на «Dynamic Programming», «Greedy», «Random», «Sorting», «Numbers»
- Нужно быть залогиненным
- Скрыто из интернета
- Изучайте Решенные практические задачи (Их там 1370)
- Надо решить N задач из 4 разных разделов. На Python.
- 8 если до 2024-11-01
- А если нет, просто блокируется доступ к другим квестам (отчисляем).
- Кроме может ОЧЕНЬ особых случаев.
- Старайтесь сделать максимально читаемое решение, и тут хороший повод потренировать стиль PEP-8, см. Blog:Advanced_Algorithms/Python-решения_—_давайте_потренируемся_их_сделать_питонистей
- За задачи из CodeChef и SpojCoding будут дополнительные бонусные очки (1 балл из настоящей 10 бальной оценки!), их решать сложнее, там не подсказывают тест вызвавший ошибку, там могут быть жесткие TL, надо больше стараться, и да, их надо решать именно на Python (любом, который есть на сервисе, хоть PyPy) оптимизировать вам могут помочь статьи:
- Бонусные задачи вполне решаются, если их не боятся → вот из последних решений → Участник:Mishaglik/Solutions/Spoj/FRQPRIME
- Выбирайте задачи из Открытые практические задачи, переходите к редактированию по «Беру…» →
- помечайте их как {{reserve-task|~~~~~}}
- Зарезервированные задачи убираются в Зарезервированные практические задачи
(Их там 116)
- Не нужно брать десятки задач на себя сразу, и освобождайте то, что не получается.
- Решенное
- Ну смотрите, как оформлено в прошлые годы
- Решение на подстранице вашей личной страницы
- Вики-ссылка на задачу
- Python-код в «<source lang="python"></source>»
- Метка «{{checkme}}», когда решите.
- Внизу вставка всего этого по клику →
- Они попадут в Категория:На проверку
(Их там 18)
- Как легче решать Python
- Загрузка данных
- Выбирайте более свежий CPython или PyPy.
Разберитесь, как зарегистрироваться на «лабе»
Блок 2
Моделирование труднорешаемых задач и решение из промышленными солверами.
Концептуально:
- Win-Win!
- Бизнес-аналитикам, алгоритмистам, прожект и продукт-менеджерам.
- Идем на https://алгоритмы.испран.рф
- В папке «adv2022-course-pyomo-business-optimization» — курсы.
- Если совсем новые в юпитер-ноутбуках — см. jupyter-intro
- Параллельно можно смотреть воркшоп по Pyomo, ну или книги.
- Можно править, комментировать, но без вандализма, полезные улучшения (визуализации, исправления ошибок → бонус).
- Там будет видео в каждом питон-ноутбуке.
- Учимся на готовых решениях[1] коллег или разборах автора курса - Решенные бизнес задачи, ну и в папке «optprob» «adv2022-course-pyomo-business-optimization курса»
- Наверное одни из самых простых и вводных:
- Некоторые решения правда озвучены студентами и их решения могут так сказать, не следовать лучшим практикам — посмотрите обязательно какие-нибудь разборы от автора курса.
- Внутри видео могут быть возможно еще неоткрытые бонус-квесты (типа что-то сделать-визулизировать и т.п.)
- Уровень 1
- «потренироваться на кошках» — решите пару уже решенных задач, постарайтесь оформлять максимально компактно и понятно:
- используйте хелперы
- выделите построение модели в функцию от параметров
- максимально понятные русскоязычные атрибуты модели.
- оформляем свои ноутбуки в подпапке «homeworks/2024-autumn», заведите там подпапку по вашему логину, желательно без пробелов. Там же можно сохранять какие-то версии обучающих ноутбуков, если хотите с ними жестко поиграть.
- сравните с решением, если вроде решение совпадает (или вы уверены, нашли ошибку и решили более правильно) — пинганите меня на ревью.
Цена — 1 балла за две задачи, но это обязательно, чтобы перейти к остальным квестам этого блока. Если найдете более эффективную постановку — например, раньше не решалось быстро через CBC, а теперь решается, ну или раза в два быстрее стало с SCIP, и т.п. — 1-2 балла.
- Бонусный квест
- который можно совместить с обучением — сделать визуализацию (matplotlib-networkx-seaborn-d3js… что хотите, на худой конец просто таблицей), для какой-нибудь решенной задачи, как в
- Код решения в проекте «adv2022-course-pyomo-business-optimization» в «optprob/Группировка людей.ipynb»,
- Код решения в проекте «adv2022-course-pyomo-business-optimization» в «optprob/Портфель_ценных_бумаг.ipynb»,
- Код решения в проекте «adv2022-course-pyomo-business-optimization» в «optprob/Аренда_склада.ipynb»
- Код решения в проекте «adv2022-course-pyomo-business-optimization» в «optprob/Распределение_рабочих_по_производственным_центрам.ipynb»…
… если ее нет. Это креативная задача, при этом потребует понимания решенной задачи — балл за хорошую визуализацию. Цена: 1-2 балла (ну насколько хорошая будет визуализация)
- Уровень 2
- решение нерешенной задачи:
- Надо решить одну! нерешенную задачу, но очень желательно сделать это красиво!
- Воркфлоу «взятия задачи» аналогичен блоку «Практикуемся_В_Алгоритмах»
- Только здесь, в вики, на «странице решения» обсуждаем постановку (если что-то непонятно), а решением будет юпитер-ноутбук подпапке «homework/2024/autumn» на алгоритмах.
- Если все совсем шикарно — бонусные очки (если задача окажется сложной — тоже).
- Выбирайте задачи из Открытые бизнес-задачи, переходите к редактированию по «Беру…» →
- Зарезервированные задачи убираются в Зарезервированные практические задачи
Цена: 1-2 балла (насколько хорошо оформленно, насколько хорошая будет визуализация)
- Можно решать дополнительные задачи (к первой задаче), но наверно всего больше двух пока не надо (нерешенные задачи — ценный ресурс, я его экономлю). Старайтесь сделать качественно, тогда можно будет решать больше.
- Уровень 3
- записать видеоролик по хорошо решенной задаче (если она сдана, отработаны претензии к оформлению и все такое). Используйте OBS
- Научитесь пользоваться OBS — (см. также [1]), попробуйте использовать экранное рисование ([2]) и сделайте видео живым и понятным.
- См. также → Blog:Advanced Algorithms/2022-12-01 Кто решил бизнес-задачи, запишите по ним видеоролики
Цена: 1 балл, но постарайтесь.
Для истории, презентация от 2022 года: 📺 видео 📺
Блок 3
Выберем несколько тем и теоретических задач.
Те, кто по результатам предущих блоков вышел на «хор», смогут улучшить оценку (но не затягивайте, держите в курсе, если это делаете).
Для тех, кому не хватило баллов, обязательная программа (алгоритмические задачи и бизнес-задачи) выполнена, и готовы идти на «отлично».
Концептуально:
- Это на «отл»
- Win-Win!
- Подготовка к защите дипломов-курсовых-кандидатских — моделирование диплома-научной работы и ее защиты.
- Анализ научной статьи про алгоритмы, с переложением ключевой части в Jupyter-ноутбук.
- Полностью «переписывать статью не надо» — не надо переводить-копировать все содержание.
- Доказательства не нужны.
- Разобраться в введении
- Моделировать постановку задачи (обычно это ЦЛП)
- Возможно придумать тестовые данные, если их там нет или не прилагались к статье.
- Воспроизвести максимально декомпозировав, основной алгоритм — попробовать смоделировать и воспроизвести алгоритм для решения.
- Некоторые примеры работ в папке articles2jupyter-examples
- глобальная проблема воспроизводимости + https://paperswithcode.com/ → мы помогаем решать.
- Если что не получается — пингуйте.
- Запишите к ним видеоролик, как в Blog:Advanced Algorithms/2022-12-01 Кто решил бизнес-задачи, запишите по ним видеоролики
- Научитесь пользоваться OBS — (см. также [3]), попробуйте использовать экранное рисование ([4]) и сделать это живым и доступным.
- Запишите видео-презентацию и забросьте мне (unlisted youtube, файлохранилища…)
- Полностью «переписывать статью не надо» — не надо переводить-копировать все содержание.
- Если предлагаемые статьи не понравились, а есть что-то про алгоритмы по теме вашей работы-диплома → можете работать над этим.
- Может прямо это и будет драфтом дипломной работы
- Презентацию можно сделать прямо из Jupyter-ноутбука, см RISE.
- Воркфлоу «взятия задачи» аналогичен блоку «Практикуемся_В_Алгоритмах» и «Моделирование бизнес-задач»
- Также, в вики, на «странице решения» обсуждаем постановку (если что-то непонятно), а решением будет юпитер-ноутбук в Lab.
- Выбирайте задачи из Открытые статьи для разбора, переходите к редактированию по «Беру…», резервируйте, как обычно …
- Идем на Lab
- Оформляем свои ноутбуки в папке «advalg-2022-homeworks»
- Учимся на готовых решениях коллег в соседних папках и решениях прошлых лет → articles2jupyter-examples
Материалы
Наверно не пригодятся для курса 2022 года.
Видеолекции
- /Лекции осеннего семестра 2011
- торрент с прошлогодними видео.
- /Лекции осеннего семестра 2012
- Курс_лекций_«Сложность_алгоритмов»_(ИСПРАН,_3_курс_МФТИ)/Лекции_весеннего_семестра_2013
Книга
Специальная верстка для чтения с ноутбуков и КПК:
- альбомная ориентация
- крупные беззасечные шрифты
Кому не нравится — пишите обоснованные протесты (почему, конструктивные предложения).
Пишите замечания по содержимому — про проблемы с версткой и библиографией не писать, все там только в процессе.
File:Book-advanced-algorithms.pdf
Примечания и ссылки
- Рекомендуется прочитать хотя бы первые лекции по введению в Python и научные вычисления.
Полезная сопутствующая литература по курсу.
- Очень хорошие лекции по классической теории сложности, написанные одним из корифеев оной: Introduction to Complexity Theory by Oded Goldreich
- Более краткий курс по классической теории сложности, университет Technion.
- Еще один классический курс лекций по теории сложности от László Lovász.
- А. Китаев, А. Шень, М. Вялый, Классические и квантовые вычисления — замечательная книга. Содержит отличное введение в теорию сложности.
- С. Дасгупта, Х. Пападимитриу, У. Вазирани, Алгоритмы [5]
- ↑ Особенно для физтехов, которые скипают теорию и не приходя в сознание смотрят «как решать»